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Summary 
 
  A set of conditions had not been formulated on the boundary of an elastic continuum since the time of 
Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity 
for a continuum with a displacement boundary condition. The missed condition, referred to as the 
boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new 
condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation 
that includes equilibrium equations and a compatibility condition in the field as well as the traction and 
boundary compatibility condition is derived from the stationary condition of the variational functional of 
the integrated force method. The new method is illustrated by solving an example of a mixed boundary 
value problem for mechanical as well as thermal loads. 
 
 

Introduction 
 
 The stress-strain law, the equilibrium equation (EE), and the compatibility condition (CC) are the 
three fundamental relations in elasticity. The material law was formulated in the mid-seventeenth century 
by Hooke (1635–1703). The equilibrium equation or the stress formulation is credited to Cauchy (1789–
1857).  Saint-Venant (1797–1886) developed the CC, or the strain formulation. It is a general belief that 
the fundamental elasticity relations were known for over a century. The thrust, therefore, was to develop 
approximate solution techniques because a closed-form solution cannot be generated for the vast majority 
of the solid mechanics problems. Such techniques included Airy’s method (ref. 1), Ritz’s method (ref. 2), 
the moment distribution technique (ref. 3), Kani’s method (ref. 4), the finite element technique (ref. 5), 
and others.  
 It is surprising that the strain formulation was not known on the boundary of an elastic continuum, 
even though Cauchy’s stress formulation explicitly contained the boundary conditions also known as the 
traction conditions.  Because of this deficiency, problems with displacement boundary conditions could 
not be solved using the direct stress calculation method, popularly referred to as the Beltrami-Michell 
formulation (BMF) (ref. 6). The strain formulation that was missed on an elastic boundary is referred to 
as the boundary compatibility condition (BCC). The BCC has been derived. Now the stress and strain 
formulations are parallel in form; each contain field equations and boundary conditions.  Earlier, we 
derived the BCC for two-dimensional (ref. 7) and three-dimensional (ref. 8) problems in elasticity in 
Cartesian coordinates. The BMF was completed by adding the new BCC to the classical method. The 
completed Beltrami-Michell formulation (CBMF) can be used to solve displacement as well as mixed 
boundary value problems in elasticity. The CBMF stress formulation is as versatile as the Navier 
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displacement method, yet its equation structure is simpler. Solutions to plate and shell problems via the 
CBMF are discussed in references 9 to 11.  
 A conservative elastician, believing the set of existing equations to be sufficient, may be reluctant to 
accept the new BCCs. However, it should be realized that some formulae and equations of the solid 
mechanics discipline were not completed in the first attempt, but were perfected eventually.  For example, 
perfecting the flexure formulae required a century between Galileo, Bernoulli, and Coulomb. Saint-
Venant completed the shear stress formula that was initiated by Navier.  Cauchy formulated the stress 
equilibrium equation that was also developed by Navier in terms of displacement, but it contained only a 
single material constant instead of two.  
 The formulation of the BCC in polar coordinates is the primary contribution of this report. The use of 
the new condition is also illustrated through the solution of a mixed boundary value problem for  
thermomechanical loads.  The CBMF containing the BCC is obtained from the stationary condition of the 
variational functional πs of the integrated force method (IFM) (ref. 8). The variational calculation is 
performed in two distinct steps:   
 
 (1) The terms of the functional πs are transformed to obtain integrands, whose coefficients are either 
displacement variables, stress function, or reactions.  
 (2) The stationary condition (ref. 12) of the functional δπs with respect to displacement, stress 
function, and reaction yield all the expressions of the CBMF.  
 
The BCC is the coefficient of the variational stress function in the line integral term. Variational calculus 
in polar coordinates is more difficult than that in the Cartesian system (ref. 7) because the coefficients of 
the terms in the functional are functions of the r-coordinate. Also the Jacobian (J = r) has to be used. A 
nonvariational approach or carelessness can easily miss an expression because of the tensorial nature of 
stress and strain.  The accuracy of CBMF derivation is essential because solution of elasticity problems in 
polar coordinates is very popular. Many existing elasticity solutions can be verified by back-substituting 
into the CBMF. To demonstrate the use of the new condition, two mixed boundary value problems are 
solved. The first example is for mechanical load, while the second is for thermal load.  
 This report is organized as follows: First, a variational derivation is given for the CBMF. Green’s 
theorem is used for a quick validation of the new boundary condition. Then the CBMF is used to solve a 
problem with stress and displacement boundary conditions. This is followed by discussion and 
conclusions. Appendix A is a listing of symbols and acronyms found in this report. Appendix B presents 
the major steps of the variational derivation, which can be used by the reader to verify the BCC. 
Appendix C presents the solution of a structure using the IFM, which is the discrete analogue of the 
CBMF. 
 
 

Completed Beltrami-Michell Formulation in Polar Coordinates 
 
 The CBMF in polar coordinates is obtained from the stationary condition of the variational functional 
(ref. 7) of the IFM. The functional πs has three terms (eq. (1a)). The first term A(σ, u) represents the strain 
energy, expressed in terms of stress σ and displacement u. The second term B(ε, ϕ) is the complementary 
strain energy written in terms of the strain ε and the stress function ϕ. The third term W is the potential of 
the work done. Basic steps of the derivation are given in appendix B. The functional is transformed into 
integrals with integrands whose coefficients are either displacement, stress function, or reaction variables. 
Symbolically it can be represented as follows: 
 

s A B Wπ = + −  (1a) 
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( ){ } ( ) ( ){ } ( )

( ){ }
1

2

field EE field CC boundary EE boundary CC

continuity condition reaction 0

s
D

u ds u d d

d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤π = + ϕ + + ϕ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ =

∫∫ ∫ ∫

∫
 (1b) 

where the two displacement components 
u
v
⎧ ⎫
⎨ ⎬
⎩ ⎭

are represented as { }.u   Likewise, {reaction} represents the 

two reactions 
reaction along 

.
reaction along 

r⎧ ⎫
⎨ ⎬θ⎩ ⎭

 Also, D is the plate domain; 1  and 2  are boundary segments where 

traction is prescribed and reaction is induced, respectively; and  is the line segment where stress is 
indeterminate. For a two-dimensional problem,  = 2 . The stationary condition of the functional in 
equation (1b) with respect to displacement, stress function, and reaction can be represented by the 
following symbolic expression: 
 

( ) { } ( ) ( ) { }

( ) ( ) { }
1

2

field EE field CC boundary EE

boundary CC continuity condition reaction 0

s
D

u ds u d

d d

⎡ ⎤ ⎡ ⎤δπ = δ + δϕ + δ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ δϕ + δ =⎣ ⎦

∫∫ ∫

∫ ∫
 (1c) 

 
 The field EE and field CC are the coefficients of the variational displacement and stress function, 
respectively, in the surface integral terms of the functional (see also appendix B). Likewise the  
boundary EE and boundary CC are the coefficients of the variational displacement and stress function, 
respectively, in the line integral terms. The continuity conditions are the coefficients of the variational 
reactions. The field equations and boundary conditions of the CBMF recovered from the stationary 
condition of the variational functional in equation (1c) are as follows: 
 
Equilibrium equations 
 
Field: 
 

( )1 0rr
rb

r r r
θσ − σ∂σ ∂τ

+ + + =
∂ ∂θ

 (2a) 

 
1 2 0b

r r r
θ

θ
∂σ∂τ τ

+ + + =
∂ ∂θ  (2b) 
 
 
 
 

Boundary: 
 

r r rn n Pθσ + τ =  (3a) 
 

rn n Pθ θ θτ + σ =  (3b) 

Compatibility conditions 
 
Field: 
 

( )

( )

( ) ( )

2 2

2 2 2

2 2

2 2 2

2

2

1 21 1

1 2

1 1
0

r r r

E r rr r

r rr r

r r rr

θ θ θ

⎡ + υ∂ σ ∂ σ ∂σ⎛ ⎞ − υ −⎢⎜ ⎟ ∂⎝ ⎠ ∂θ ∂⎢⎣
+ υ∂ σ ∂ σ ∂συ

+ − +
∂∂ ∂θ

⎤+ υ + υ∂ τ ∂τ
− − =⎥

∂ ∂θ ∂ ⎥⎦

 (4) 

. 

Boundary: 
 

( ) ( )

( ) ( ) ( )

1

2 1
1 1 0

r r rn
r r

n
r r

θ θ

θ
θ

⎡ ⎤+ υ∂ ∂τ⎛ ⎞σ − υσ − + σ − σ⎢ ⎥⎜ ⎟∂ ∂θ⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤+ υ∂σ∂τ

+ + υ − + υ + τ =⎢ ⎥
∂ ∂θ⎢ ⎥⎣ ⎦

 

(5) 



NASA/TM—2005-213634 4  

The kinematics boundary conditions are 
 

0u u− =  (6a) 
 

0υ − υ =  (6b) 
 
and   
 
r and θ  are the polar coordinates 
σr, σθ, and τ are the stress components 
εr, εθ, and γ  are the strain components 
u and υ  are the displacements 
br and bθ are body forces 

rP  and Pθ  are tractions applied along boundary segment 1  
u and υ  are initial displacements along boundary segment 2  
ϕ   is the stress function 
  
The CBMF in equations (2) to (6) contains the following: 
 
 (1) The stress formulation of Cauchy as coefficients of variational displacements δu and δυ  in the 
surface integral. It consists of two EEs in the field (eqs. (2a) and (2b)) and two on the boundary (eqs. (3a) 
and (3b)) that are popularly known as the traction conditions. The stress formulation has two distinct 
components: the field equations and the boundary conditions. 
 (2) Strain formulation as the coefficient of variational stress function δϕ. It is written in terms of 
stress for an isotropic material with Young’s modulus E and Poisson’s ratio υ. It consists of the single 
field CC (eq. (4)), along with one new BCC (eq. (5)). Saint-Venant, unlike Cauchy, formulated only the 
field condition. He missed the boundary conditions that we have completed. Now, both the stress and 
strain formulations are consistent, containing the field equations (eqs. (2a), (2b), and (4)) as well as the 
boundary conditions (eqs. (3a), (3b), and (5)). In appendix B, the strain formulation is derived in terms of 
the strains.    
 (3) Displacement boundary conditions. Two kinematics displacement boundary conditions (eqs. (6a) 
and (6b)) are obtained as coefficients of the variational reactions. A rigorous derivation of the continuity 
condition is more difficult than the stress and the strain formulations, which are straightforward.  
 
 The three-component stress tensor (σr, σθ, and τ) is indeterminate in the field and on the boundary 
because the state of equilibrium provides only two equations. To achieve determinacy of the stress state, 
we must add one CC in the field as well as one on the boundary. Saint-Venant has given us the field CC.  
We have formulated the BCC. For the derivation of elasticity equation, the variational technique is an 
elegant method because of the tensorial nature of stress and strain. A nonvariational approach may miss 
an equation.  
 The CC should be imposed only when the domain is indeterminate, whether it is the field or the 
boundary. The CC has no relevance for a determinate domain or a determinate boundary.  A plane stress 
problem is one degree indeterminate in the field because there are three stresses and two displacements. It 
has one field CC. A BCC should not be imposed on a free or a determinate boundary, where at least one 
stress component is zero. A clamped boundary is typically indeterminate; thus, one BCC is imposed.  
 The solution of an elasticity problem using the CBMF has two distinct steps: 
 
 (1) The stress state is calculated first using the equations (1) to (5) for an elastic continuum with stress 
and displacement boundary conditions. The displacement boundary conditions (eq. (6)) are not used, but 
the BCC is used.  
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 (2) Displacements are back-calculated by integrating the strain field. The kinematics boundary 
conditions given by equation (6) are used to evaluate the constants of integration in the displacement 
function. 
 
The CBMF recognizes that displacement does not induce stress. The derivative of displacement, which 
becomes the strain that induces stress, is accounted for through the BCC. Displacement conditions are 
used to eliminate rigid body movement as explained in step (2). 
 The BCC expressed in strain, stress, and displacement is as follows: 
 
Expressed in strain: 
 

( ) 0
2 2

r r
rr n n

r r r r r r rθ θ
ε ∂ε∂ ∂γ ∂γ γ⎡ ⎤ ⎡ ⎤

− ε + + − − =⎢ ⎥ ⎢ ⎥∂ ∂θ ∂θ ∂⎣ ⎦ ⎣ ⎦
 (7a) 

 
Written in stress for an isotropic material with Poisson’s ratio υ: 
 

( ) ( ) ( ) ( ) ( )1 2 1
1 1 0  r r rn n

r r r r
θ

θ θ θ
⎡ ⎤ ⎡ ⎤+ υ + υ∂σ∂ ∂τ ∂τ⎛ ⎞σ − υσ − + σ − σ + + υ − + υ + τ =⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂θ ∂ ∂θ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (7b) 

 
In terms of displacements u and v: 
 

2 2 2 2
2

2 2 0r
u u ur n r r r r n

r r rr
θ

⎡ ⎤ ⎡ ⎤∂ ∂ υ ∂υ ∂ ∂ υ ∂υ ∂
− − + + υ − − − =⎢ ⎥ ⎢ ⎥

∂ ∂θ ∂θ ∂ ∂θ ∂ ∂θ∂θ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (7c) 

 
The BCC expression contains either all three strains, or three stresses, or it contains derivatives of two 
displacement components. The BCC is not a continuity condition in displacement, stress, or strain; 
however, it is a function of the variables. As such, the BCC is expressed in the derivatives of stress, strain, 
and displacement, but it is not a component of rotation. The BCC is an independent condition. It forms a 
new elasticity expression that was missed since the time of Saint-Venant. The field CC is a second-order 
differential equation, while the boundary counterpart is a first-order equation. This characteristic is 
applicable to the stress formulation. The field EEs are first-order equations, while the boundary (or 
traction) conditions are algebraic equations.   
 
 

Annular Plate Subjected to Thermomechanical Load 
 
 We will now illustrate the CBMF calculation strategy through the solution of a radially symmetrical 
annular plate with mixed boundary conditions for mechanical and thermal loads. Consider a plate made of 
an isotropic material with Young’s modulus E and Poisson’s ratio υ. It has thickness h (considered unity) 
with outer and inner radii of a and b, respectively, as shown in figure 1(a). The mechanical load case 
consists of a uniform radial load of intensity p applied at the outer boundary r = a. The inner boundary is 
restrained: u = 0 at r = b. The CBMF for the mixed boundary value problem is generated from a special 
case of the variational functional. It is obtained using the condition of symmetry or by setting the shear 
stress τ and transverse displacement υ  to zero (τ = 0, υ  = 0) as well as by neglecting variation with 

respect to the angle θ: f 0∂⎛ ⎞=⎜ ⎟∂θ⎝ ⎠
. Also, a simpler stress function ψ is used.  
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r Uσ = ψ −  (8a) 
 

dr U
dr rθ
ψ ψ⎛ ⎞σ = + −⎜ ⎟

⎝ ⎠
 (8b) 

 
where U = 0 for this example. 
 
 

Solution for Mechanical Load Only 
 
 The equations of CBMF for a symmetrical annular plate subjected to a uniform mechanical load of 
intensity p are listed in equations (9) to (11): 
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Equilibrium equations 
 
Field: 

( )
0rr

r r
θσ − σ∂σ

+ =
∂

 (9a) 

 
Boundary: 
   at  r p r aσ = =  (9b) 
 

Compatibility conditions 
 

Field: 

( ) ( ) ( )
1

0r rr rθ θ
+ υ∂

σ − υσ + σ − σ =
∂

 (10a) 

 
Boundary: 
 0  at  r r bθσ − υσ = =  (10b) 

where the displacement boundary condition is 
 

0  at  u r b= =  (11) 
 
 There are two stresses σr and σθ and one displacement u. In the field, there is one EE (eq. (9a)) and one 
CC (eq. (10a)). On the boundary there is one traction condition (eq. (9b)) and a single BCC (eq. (10b)). 
Also, at the inner boundary there is one kinematics condition (eq. (11)). Solution to equations (9a), (9b), 
(10a), and (10b) yield the stress response. The single displacement u is back-calculated by integrating the 
strain and evaluating the integration constant using the kinematics condition (eq. (11)).  
 The EE and CC in the field are arranged to obtain the following two simpler uncoupled equations: 
 

( ) 0r
d
dr θσ + σ =  (12a) 

 
( )

0  rrd
dr r

θσ − σσ
+ =  (12b) 

 
Integration of the first equation (12a) yields the sum of the stresses σr + σθ to be a constant.  The second 
equation (12b) is uncoupled and solved. The two constants in the stress variables are determined from the 
traction condition (eq. (9b)) and the new BCC (eq. (10b)). The stress solution follows: 
 

( ) ( )
( ) ( )

2 2 2

2 2 2

1 1

1 1
r

r b a p
a b r

⎡ ⎤+ υ + − υ ⎛ ⎞⎣ ⎦σ = ⎜ ⎟⎜ ⎟+ υ + − υ ⎝ ⎠
 (13a) 

 

( ) ( )
( ) ( )

2 2 2

2 2 2

1 1

1 1

r b a p
a b r

θ

⎡ ⎤+ υ − − υ ⎛ ⎞⎣ ⎦σ = ⎜ ⎟⎜ ⎟+ υ + − υ ⎝ ⎠
 (13b) 

 

( )
( )

2
2

1
1

1

r
p

b
a

θσ + σ =
− υ ⎛ ⎞+ ⎜ ⎟+ υ ⎝ ⎠

 (13c) 

 

2
2 for 0.3

1 0.54
r

p

b
a

θσ + σ = υ =
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (13d) 
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For a plate with E = 30×106 psi, υ = 0.3, p = 1 psi, a = 20 in., and b = 10 in., the stresses at the outer 
boundary are σr = 1.0, while σθ = 0.763 psi and σr + σθ = 1.763 psi. At the inner boundary these are  
σr = 1.356 psi, σθ = 0.407 psi, and σr + σθ = 1.763 psi. The sum of the stresses σr + σθ = 1.763 psi is 

independent of the r coordinate of the plate. The BCC 2
620.62r
r

θσ − υσ = −  has an inverse quadratic 

variation with respect to the radius, with a minimum value of zero at the restrained boundary (r = 10 in.) 
and a maximum value of 0.46 psi at the outer free boundary (r = 20 in.). The BCC should not be imposed 
on the free boundary at r = a = 20 in. The stress state in the mixed boundary value problem is obtained 
without any use of the prescribed displacement boundary condition. The displacement function u is 
obtained following the standard elasticity solution strategy.  Stress is changed into strain using Hooke’s 
law. It is integrated to obtain the displacement function that contained a constant c. 
 

( ) ( )
( ) ( )

2 2 2 2

2 2

1

1 1

r b au p c
rE a b

− υ − ⎛ ⎞
= +⎜ ⎟⎜ ⎟+ υ + − υ ⎝ ⎠

 (14a) 

 
The constant c does not affect the stress state. For the problem, the constant is calculated to be zero  
(c = 0) from the homogeneous kinematics boundary condition u = 0 at r = b (eq. (11)): 
 

( ) ( )
( ) ( )

2 2 2 2

2 2

1

1 1

r b au p
rE a b

− υ − ⎛ ⎞
= ⎜ ⎟⎜ ⎟+ υ + − υ ⎝ ⎠

 (14b) 

 
The values of displacements are u = 0 at the inner boundary, r = b, and u = 3.5×10–7 in. at the outer 
boundary, r = a.  
 The CBMF produced the solution to the mixed boundary value problem in two steps: First the stress 
state was calculated using the field EE and CC, along with the traction condition as well as the BCC. 
Then the displacement function was back-calculated.  Solution to the mixed boundary value problem 
could not have been obtained by the classical BMF stress formulation. Solution to the mixed boundary 
value problem is not available in standard textbooks in elasticity (refs. 6, 13, and 14). 
 
 

Solution for Thermal Load Only 
 
 The CBMF solution for the annular plate is obtained for a temperature distribution given as 
 

( )
( )

( )a b
b

T T
T T r b

a b
−

= + −
−

 (15) 
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The temperature distribution is shown in figure 1(b). It has a linear variation with values Ta and Tb at  
r = a and r = b, respectively. The coefficient of thermal expansion is α. The CBMF equations for the 
annular plate subjected to a thermal load are given below: 
 

Equilibrium equations 
 
Field: 

( )
0rr

r r
θσ − σ∂σ

+ =
∂

 (16a) 

 
 
 
 

Traction or boundary: 

 0  at  r r aσ = =  (16b) 
 

Compatibility conditions 
 
Field: 

( ) ( ) ( )
1

r rr r
dTE
dr

θ θ
+ υ∂

σ − υσ + σ − σ
∂

= −α
 (17a) 

 
 
Boundary: 

  at  r ET r bθσ − υσ = −α =  (17b)

where the displacement boundary condition is  
 

0  at u r b= =  (18) 
 
Both the field and the boundary CCs (eqs. (10a) and (10b)) for the mechanical load are modified for the 
temperature load to obtain equations (17a) and (17b). The field EE is not changed. The mechanical load is 
set to zero (p = 0) in the traction equation (16b). The EE and CC in the field are rearranged to obtain the 
following two simpler working equations: 
 

( )r
d dTE
dr drθσ + σ = −α  (19a) 

 
( )

0rrd
dr r

θσ − σσ
+ =  (19b) 

 
The field equations are solved for the boundary conditions to obtain the response, consisting of σr, σθ, and 
u: 
 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

3

1 2 1 2

2 (1 1 2

r

a

b

E a r

r a b a b a b

T r a b a b rb a b ab a b

T r a b a b rb a b ab b a

⎧ ⎫
α −⎪ ⎪σ = ⎨ ⎬

⎡ ⎤− + + υ −⎪ ⎪⎣ ⎦⎩ ⎭
⎛ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤× + + υ − + − υ − − υ + − υ − − υ⎜ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎝

⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + + υ − + + υ − + υ + − + υ + + υ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎠

 (20a) 
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( ) ( )
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

2 2 2 2 2

3 2 2 2 2 2 3 3 3 3 2 2

3 2 2 2 2 2 3 3 2 3 3 2 2

3

2 2 1 2

2 3 2 1

a

b

E

r b a a b a b

T r a b a b r a b a b a b a b

T r a b a b r a b ab a b a b a b

θ

⎧ ⎫
α⎪ ⎪σ = ⎨ ⎬

⎡ ⎤− + + υ −⎪ ⎪⎣ ⎦⎩ ⎭
⎛ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤× + + υ − − + + υ − + − υ − − υ⎜ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝

⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + + υ − + − + + υ − + + υ − + υ ⎟⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎠
  (20b) 
 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

1

3

2 1 2

2 2 1

a

b

b r
u

r b a a b a b

T r a b a b ra a b a b a b a b

T r a b a b ra a b a b a b a b

⎧ ⎫
α + υ −⎪ ⎪= ⎨ ⎬
⎡ ⎤− + + υ −⎪ ⎪⎣ ⎦⎩ ⎭

⎛ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤× + + υ − + − − υ − + − υ − − υ⎜ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎝
⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + + υ − + − + υ − + + υ − + υ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎠

 (20c) 

 
The numerical values of the response parameters for Ta = 100 °C, Tb = 50 °C, and α = 12×10–6/°C are 
 
 (1) at r = a: σr = 0 ksi, σθ = –17.5 ksi, and u = 0.012 in. 
 (2) at r = b: σr = 14.2 ksi, σθ = –13.7 ksi, and u = 0 in. 
 
The sum of the stresses σr + σθ  = 18508 – 1800r has a linear variation with respect to the r coordinate 
because of a similar distribution of temperature (see eq. (15)). The BCC 

2
1427.7976.478 0.780 ksir ET r

r
θσ − υσ + α = + −  is zero at the inner boundary.  

 The CBMF solved the thermal load problem for a mixed boundary value problem. Superposition of 
solutions for mechanical and thermal loads yields the result for thermomechanical combined load.  
 
 

Discussions 
 
 This section examines the CBMF concept. Attributes of the CC are also given. The annular plate 
example is supplemented with an eight-bar discrete truss structure. The solution to the truss problem 
using the integrated force method (IFM), which is the discrete analogue of CBMF, is given in 
appendix C. 
 
 

Completed Beltrami-Michell Formulation  
 
 Hooke’s law, which is common to all analysis methods, relates stress to strain through the material 
matrix [G]: 
 

{ } [ ]{ }Gσ = ε  (21) 
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Stress σ must satisfy the state of equilibrium in the field as well as on the boundary of an elastic 
continuum. Likewise, strain has to comply with the condition of compatibility in the domain as well as on 
the boundary. The stress and strain formulations are sufficient for the determination of the stress state in 
an elastic continuum with stress and displacement boundary conditions. The equations that are required to 
calculate the stress state can be conceptualized in the following symbolic expression: 
 

{ }
Equilibrium equations Mechanical load

stressCompatibility conditions Initial deformation
⎡ ⎤ ⎧ ⎫⎪ ⎪=⎢ ⎥ ⎨ ⎬
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

 (22) 

 
The state of equilibrium and compatibility is sufficient for the determination of the stress state. 
Displacement is not required to calculate stress. An elastic body can undergo rigid body displacement and 
rotation that does not induce stress. Total displacement can be decomposed into an elastic component and 
a rigid body component: disp = dispelastic + disprigid. The stress calculation in the CBMF accounts for the 
elastic component via the strain in the field and on the boundary. Recovery of the displacement from the 
stress state uses the kinematics or the rigid body displacement component. 
 Calculating stress by combining the equilibrium and compatibility was envisioned by Michell, and it 
is described by Love in the following quotation (ref. 1): 
  

“It is possible by taking account of these relations [compatibility conditions] to obtain a complete 
system of equations [Equation 19] which must be satisfied by stress components, and thus the 
way is open for a direct determination of stress without the intermediate steps of forming and 
solving differential equations to determine the components of displacements.” 

 
The proposition of Beltrami and Michell can be realized now with the availability of the new BCC.  A 
direct method is now available to calculate the stress state in a general elastic continuum with 
displacement as well as stress boundary conditions. The stress state is obtained without any recourse to 
displacement, which is back-calculated by integrating the strains. In the quotation, “intermediate steps” 
refers to Navier’s displacement method that contains higher order differential equations. For the annular 
plate example, the CBMF required the solution of two uncoupled differential equations. Navier’s method 
in contrast would have required the solution of a third-order differential equation.  
 An IFM of structural analysis has previously been formulated (ref. 8). IFM is the discrete analogue of 
the CBMF in elasticity.  In IFM, forces are calculated from a set of equations [S]{F} = {P*} that include 
the EE and the CC. Displacements are back-calculated. The IFM solution to a truss problem is given in 
appendix C. 
 
 

Nature of Compatibility Condition 
 
 The CC is a controller type of relation. Strains are controlled, f(εr, εθ, γ) = 0, in elasticity (or  the 
strain formulation); likewise the deformations β are balanced, f(β1, β2, . . . , βn) = 0, in a discrete  
structural system. The controller type of relation cannot be derived from an application of the standard 
concepts of mechanics, like “action equal to reaction” (leading to the EE), or the “cause effect relation” 
(that has given us Hooke’s law), or the “displacement continuity concept” (the “strain continuity” is 
conceptually incorrect). This is probably one important reason for the late development of these CCs. In 
elasticity, the field CC (or Saint-Venant's “strain formulation”) can be derived by simply eliminating  
the displacements from the strain displacement relations. However, the derivation of the BCC requires the 
use of variational calculus. For structures, a direct application of Saint-Venant's “strain formulation” 
would have been sufficient for the derivation of the CC (ref. 8). No calculus would have been required  
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because, like EE, the CC is also an algebraic equation. But such a procedure was not adopted, and the CC 
was not developed as a deformation balance concept. Variational calculus is the right tool to derive the 
BCC because of the tensorial nature of stress and strain. 
 
 

Nontriviality Property of Boundary Compatibility Condition 
 
 The field CCs fCC are satisfied automatically when expressed in continuous displacement functions u 
and υ : fCC(u, υ ) = ξ(u, υ ) – ξ(u, υ ) = 0. However, the BCC, when expressed in terms of displacements, 
produces a nontrivial condition: 
 

 
2 2 2 2

2
2 2 0r
u u ur n r r r r n

r r rr
θ

⎛ ⎞ ⎛ ⎞∂ ∂ υ ∂υ ∂ ∂ υ ∂υ ∂
− − + + υ − − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂θ ∂θ ∂ ∂θ ∂ ∂θ∂θ ∂⎝ ⎠ ⎝ ⎠

 (23) 

 
The Navier displacement method should account for the BCC because this is not a trivial condition in 
displacement. The BCC should be enforced along the interelement boundaries in a finite element model. 
The role of BCC should be investigated further in the Navier displacement method. A two-span plate 
made of two different materials supported on an elastic foundation may be an ideal example for the 
investigation. 
 
 

Rotation and Compatibility Condition 
 
 The BCC should not be confused with rotation. An elastic body under load moves from its initial 
position to occupy the final form by undergoing strain, an x  translation, and a θ  rotation (see fig. 1(c)).  
Only strain (not translation or rotation) induces stress. Strain is zero when the body is rigid. Rotation and 
strain are independent of each other, even though both quantities are defined in terms of the derivatives of 
displacement.  For example, the BCC, which is a function of the strains is defined in polar coordinates as 
 

( ) 0
2 2

r r
rr n n

r r r r r r rθ θ
ε ∂ε∂ ∂γ ∂γ γ⎡ ⎤ ⎛ ⎞

− ε + + − − =⎜ ⎟⎢ ⎥∂ ∂θ ∂θ ∂⎣ ⎦ ⎝ ⎠
 (24) 

 
The BCC enforces an equality constraint on the strain components; it imposes no restriction on either 
translation or rotation. The annular disk requires the BCC for analysis even while it is undergoing 
translation and rotation on a flat surface (with z = 0), as shown in figure 1(c).  
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Stability of Structure 
 
 Consider the discrete truss shown in figure 2. Its analysis is given in appendix C. The truss has one 
field CC and one boundary CC as follows: 
 
Field CC: 
 

1 2 3 4 5 62 2 0 (expressed in bar deformation, β)β + β − β − β + β + β =  (25a) 
 

1 2 3 4 5 62 2 0 (expressed in bar stress, σ)σ + σ − σ − σ + σ + σ =  (25b) 
 
Boundary CC: 
 

2 7 0 (in deformation)β + β =  (25c) 
 

2 7 0 (in stress)σ + σ =  (25d) 
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The field CC in equation (25a) restrains the six bar stresses. This is the discrete analogue of  
Saint-Venant’s strain formulation (see eq. (4)). On the boundary, two member stresses are related  
(eq. (25c)). The two stresses σ2 and σ7 cannot assume independent values in the lower boundary  
chord in figure 2(a). The situation is similar to the BCC of the annular plate.  The stresses σr  
and σθ cannot assume independent values along the inner boundary because of the BCC 

0 0.4068 0.3 1.356 0, or .r rθ θσ − υσ = ⇒ − × = σ = υσ  Compatibility conditions are required for the 
analysis of indeterminate structures, which are more stable than their determinate counterpart. Stability of 
a structure may concern the state of equilibrium. The CC does not degrade the stability of a structure. The 
original truss shown in figure 2(a) is displaced in two steps. The axial constraint at node 5 is released first. 
This process eliminates the BCC but the structure is still stable. It is one degree indeterminate and the 
support at node 5 can move along the x-coordinate direction. If the transverse restraint is released at that 
node, then the structure rotates. The truss undergoes an x  translation and a θ  rotation as depicted in 
figure 2(b). It can be analyzed as a mechanism by accounting for the field CC (given by eq. (25a)). 
 
 

Number of Boundary Compatibility Conditions 
 
 There are two displacement boundary conditions in a plane elasticity problem. The question is 
“should there be two BCCs?” The answer is “no.” The number of BCCs is equal to the number of field 
CCs, which is equal to the indeterminacy r, defined as the difference in the number of stress n and 
displacement m variables (r = n – m). The elasticity problem in polar coordinates has three stresses and 
two displacements. It is one degree indeterminate, and it has one field CC and one boundary CC. The 
number of displacement boundary conditions in the Navier displacement method is not equal to the 
number of BCCs. Consider the displaced position for the annular plate and the truss shown in figures 1(c) 
and 2(b), respectively. The plate undergoes translation and rotation, referred to as the kinematics 
conditions. The plate is restrained at the inner boundary, which is the elastic condition. The calculation of 
the displacement function in the Navier displacement method requires the simultaneous compliance of 
both types of conditions: kinematics as well as the elastic conditions. In the CBMF, the kinematics and 
the elastic conditions are enforced in two steps. First, the elastic condition, which essentially is the BCC, 
is used to calculate the stress response.  In the annular plate example, the BCC is used to calculate stress 
in the CBMF. The kinematics condition u = 0 is then used to evaluate the integration constant in the 
displacement function.  
 
 

Concluding Remarks 
 
 The boundary compatibility condition (BCC) for an elastic continuum has been derived in polar 
coordinates using a variational approach.  The BCC in essence is a constraint that is imposed on the strain 
or the stress state. The new boundary condition completes the stress formulation in elasticity. The 
completed Beltrami-Michell stress formulation can be used to calculate the stress state in a general elastic 
continuum without any reference to the displacement in the field or on the boundary.  The displacement is 
back-calculated from the stress state. The BCC when expressed in displacements yields a nontrivial 
condition.  
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Appendix A 
Symbols and Acronyms 

 
Symbols: 
 
A  strain energy  

a, b plate outer and inner radii, respectively 

B  complementary strain energy 

br, bθ body forces 

c displacement function constant 

D  plate domain  

E  Young’s modulus 

f  function 

{F}  member force vector 

Gr, Gθ Green’s functions 

[G]  material matrix 

h plate thickness 

J Jacobian 

 domain boundary 

1 2,  boundary segments 

nr, nθ direction cosines 

{P*} load vector 

,rP Pθ  prescribed loads or tractions 

p  mechanical load 

Rr, Rθ reactions 

r, z, θ polar coordinates 

[S]  IFM governing matrix 

T  temperature distribution 
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U potential function 

u, v  displacements 

,u v  prescribed displacements 

V  body force potential 

W  potential of work done 

x   translation 

α coefficient of thermal expansion 

β  deformation 

εr, εθ, γ plain strain components 

θ   rotation 

ξ  function of displacement 

πs  variational functional of the integrated force method 

σi  bar stress 

σr, σθ, τ plain stress components 

υ  Poisson’s ratio 

ψ simple stress function 

ϕ  stress function 

 
Acronyms: 
 
BCC boundary compatibility condition 

BMF Beltrami-Michell formulation 

CBMF completed Beltrami-Michell formulation 

CC  compatibility condition 

EE  equilibrium equation 

IFM integrated force method 
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Appendix B 
Variational Formulation for the Completed Beltrami-Michell Formulation 

 
 This appendix provides the variational derivation of the completed Beltrami-Michell formulation in 
polar coordinates that includes the new boundary compatibility condition (BCC). The equations are 
obtained from the stationary condition of the integrated force method (IFM) functional πs, defined 
previously in equation (1a) as 
 

s A B Wπ = + −  (B1) 
 
where 
 

3 5 61 2 4
r

D

u uA u hrdrd
r r r r r

θ
θ

⎛ ⎞σ ∂υσ ∂ τ ∂ τ∂υ τυ
= + + σ + + − θ⎜ ⎟⎜ ⎟∂ ∂θ ∂ ∂θ⎝ ⎠
∫∫  (B2a) 

 
22 27 8 9 10 11

2 2 2 2
r r

D

B hrdrd
r r r rr r r

θ
⎛ ⎞ε ∂ ϕε ∂ ϕ ε ∂ϕ γ∂ϕ γ∂ ϕ

= + + + − θ⎜ ⎟⎜ ⎟∂ ∂ ∂θ∂θ ∂ ∂θ⎝ ⎠
∫∫  (B2b) 

 

( ) ( )
1 2

13 15 1612 14

1 2r r r
D

W h uP P d uR R d b u b rdrdθ θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + υ + + υ + + υ θ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫∫  (B2c) 

 
The plate domain D has boundary ,  that is separated into segments 1 and 2 ;   = 1  + 2 .  Body 
forces are br and bθ. Along the boundary segment 1 , loads rP  and Pθ  are prescribed, and displacements 
u and υ  are free.  The segment 2  has prescribed displacements u and υ  that can induce reactions Rx 
and Rr. The derivation sets the uniform plate thickness to unity (h = 1) without any consequence. 
 The term A represents the strain energy, and it is expressed in stress and displacement, which are 
considered independent of each other. The strain energy term B is expressed in strain and stress function 
ϕ, which are also considered independent of each other. The potential of the work done is W. Body force 

potential V is defined as  and r
V Vb b
r rθ

∂ ∂
= =
∂ ∂θ

. The stress function ϕ is defined as  

 
2

2 2r V
r r r
∂ϕ ∂ ϕ

σ = + −
∂ ∂θ

 (B3a) 

 
2

2 V
r

θ
∂ ϕ

σ = −
∂

 (B3b) 

 

r r
∂ ∂ϕ⎛ ⎞τ = − ⎜ ⎟∂ ∂θ⎝ ⎠

 (B3c) 
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 Each term of the functional is reduced to obtain new terms that contain two factors. The second factor 
can be displacement, a stress function, or reaction. The first factor is an expression in terms of stress, 
strain, and load. The stationary condition of the functional with respect to displacement, stress function, 
and reactions will yield the following expressions: 
 
 (1) Field equilibrium equations (EEs) in stress. They are the coefficients of the variational 
displacements δu and δυ  in the surface integral terms. 
 (2) Boundary EEs, or traction conditions. They are the coefficients of δu and δυ  in the line integral 
terms. 
 (3) Field CC in strains. It is the coefficients of the variational stress function ( )δϕ  in the surface 
integral term. 
 (4) Boundary CC. It is the coefficient of (δϕ) in the line integral term. 
 (5) The displacement continuity condition. It is the coefficient of the variational reactions in the line 
integral term. 
 
Derivation of equations stated in items (1) to (4) listed above (see eq. (B4) below) is straightforward. The 
derivation of the continuity condition (item (5)) required back-calculation (see eqs. (B10) to (B12) 
below). 
 The first 11 terms of the functional reduced using techniques of calculus are given in equation (B4). 
The other five terms (12 through 16) are retained without any operation. 
 

[ ] [ ]
1

r r
r r r

u ds n u d u ds
r r r

∂σ σ∂ ⎛ ⎞⎛ ⎞σ = σ − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫∫ ∫ ∫∫  

 

[ ] [ ]
2 u ds n u d u ds

r rθ
τ∂ ∂τ⎛ ⎞ ⎛ ⎞= τ −⎜ ⎟ ⎜ ⎟∂θ ∂θ⎝ ⎠ ⎝ ⎠∫∫ ∫ ∫∫  

 

[ ]
3 u ds u ds

r r
θ θσ σ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫∫ ∫∫  

 

[ ] [ ]
4

rds n d ds
r r r

τ∂υ ∂τ τ⎛ ⎞ ⎛ ⎞= τ υ − + υ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫∫ ∫∫ ∫∫  

 

[ ] [ ]
5

ds n d ds
r r
θ θ

θ θ
σ ∂υ ∂σ⎛ ⎞ ⎛ ⎞

= σ υ − υ⎜ ⎟ ⎜ ⎟∂θ ∂θ⎝ ⎠ ⎝ ⎠∫∫ ∫ ∫∫  

 

[ ]
6

ds ds
r r
τυ τ⎛ ⎞ ⎛ ⎞− = − υ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫∫ ∫∫  

 

( ) ( ) [ ] ( ) [ ]
7 2 2

2 2 2 2
1 1r r

r rds n d n d ds
r rr rθ θ

⎛ ⎞ε ε∂ ϕ ∂ϕ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − + ε ϕ + ε ϕ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎜ ⎟∂θ ∂θ∂θ ∂θ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫∫ ∫ ∫ ∫∫  

 

[ ] [ ]
8

r r r rnds d ds
r r r r r
ε ∂ϕ ε ∂ε

= ϕ − ϕ
∂ ∂∫∫ ∫ ∫∫  
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( ) ( ) [ ] ( ) [ ]

( ) ( ) [ ] ( ) [ ]

229

2 2

2

2
2

r
r

r
r

n r r
ds n d d ds

r r rr r r

n r
n d d ds

r r r r r r

θ θθ
θ

θ θθ
θ

⎛ ⎞ ∂ ε ∂ εε ∂ ϕ ∂ϕ⎡ ⎤= ε − ϕ + ϕ⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂ ∂∂ ∂⎣ ⎦⎝ ⎠
⎛ ⎞∂ ε ∂ ε∂ε∂ϕ⎡ ⎤ ⎜ ⎟= ε − ϕ + + ϕ⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

∫∫ ∫ ∫ ∫∫

∫ ∫ ∫∫
 

 

[ ] [ ]
10

2 2ds n d ds
rr rθ

γ∂ϕ γ ∂γ⎛ ⎞ ⎛ ⎞= − ϕ − ϕ⎜ ⎟⎜ ⎟∂θ ∂θ⎝ ⎠⎝ ⎠∫∫ ∫ ∫∫  

 

[ ]

[ ]

211

2

1
2

2 2

r

r

ds n n d
r r r r

n d n d ds
r r r r

θ

θ

⎛ ⎞γ ∂ ϕ ∂γ ∂γ⎛ ⎞− = − + δϕ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂θ ∂ ∂θ⎝ ⎠⎝ ⎠

γ ∂ϕ γ ∂ϕ ∂ γ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎡ ⎤− + − ϕ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂θ ∂ ∂ ∂θ⎝ ⎠ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦

∫∫ ∫

∫ ∫ ∫∫
  

  (B4) 
 
All 11 terms are combined to obtain the following form of the functional: 
 

[ ] [ ]

[ ]

( )[ ] ( )[ ]( )

( )
1

22 2

2 2 2 2

2

2

2

rr
s r

D

r r

D

r r r r

r
r

b u b ds
r r r r r r

ds
r r r r r rr r r

n n P u n n P d

r
n

r r r r

θ θ
θ

θ θ

θ θ θ θ

θ

⎧ ⎫σ − σ ∂σ∂σ ∂τ ∂τ τ⎛ ⎞ ⎛ ⎞
π = − + − + + + + + υ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂θ ∂ ∂θ⎝ ⎠ ⎝ ⎠⎩ ⎭

⎛ ⎞∂ ε ∂ε∂ ε ∂ε ∂γ ∂ γ
+ − + + − − ϕ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂θ∂θ ∂ ∂θ⎝ ⎠

+ σ + τ − + τ + σ − υ

⎧ ⎫∂ εε ∂ε∂γ⎪ ⎪+ − + +⎨ ⎬∂ ∂θ⎪ ⎪⎩ ⎭

∫∫

∫∫

∫

[ ]

( )
2 2

2

2

2 2

r

r
r r r

n d
r r r

n n n n d uR R d
r r r

θ

θ θ θ θ

⎛ ⎞⎧ ⎫∂γ γ⎛ ⎞− − ϕ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂θ ∂ ⎝ ⎠⎩ ⎭⎝ ⎠
⎧ ⎫⎛ ⎞εγ ∂ϕ γ ∂ϕ⎪ ⎪⎛ ⎞ ⎡ ⎤ ⎡ ⎤+ ε + − + + + υ⎨ ⎬⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥∂ ∂θ⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

∫

∫ ∫

 (B5) 

 
The variation of the functional with respect to displacements δu and δυ  yields the field EEs 
 

0rr
rb

r r r
θσ − σ∂σ ∂τ

+ − + =
∂ ∂θ

 (B6a) 

 
2 0b

r r r
θ

θ
∂σ∂τ τ

+ + + =
∂ ∂θ

 (B6b) 
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Likewise, the field CC is obtained as the coefficient of the variation of the stress function δϕ: 
 

22 2

2 2 2 2
2

0r r

r r r r r rr r r
θ θ∂ ε ∂ε∂ ε ∂ε ∂γ ∂ γ

− + + − − =
∂ ∂ ∂ ∂θ∂θ ∂ ∂θ

 (B7) 

 
Along the boundary segment 1 , the variation of the displacements δu and δυ  yields the EEs or the 
traction conditions 
 

r r rn n Pθσ + τ =  (B8a) 
 

rn n Pθ θ θτ + σ =  (B8b) 
 
Along an indeterminate boundary, the BCC is obtained as the coefficient of the variation of the stress 
function δϕ: 
 

( )
0

2 2
r r

r
r

n n
r r r r r r r

θ
θ

⎛ ⎞∂ εε ∂ε∂γ ∂γ γ⎛ ⎞
− + + − − =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂θ ∂θ ∂⎝ ⎠⎝ ⎠

 (B9) 

                                                                                                                
 In summary, stress equilibrium is enforced in the field (eq. (B6)) and on the boundary (eq. (B8)). 
Likewise strain compliance is achieved in the field (eq. (B7)) and on the boundary (eq. (B9)). 
 
 

Displacement Continuity 
 
 The displacement boundary conditions 0u u− =  and 0υ − υ =  are routinely used in analysis. Their 
derivations are shown through back-calculation. This strategy is followed to avoid artificiality in a direct 
derivation process. The expression ( ) ( ) ( )+ ( ) 0r r r ru u P n n P n nθ θ θ θ− δ = σ + τ υ − υ δ = τ + σ =  yields 
the continuity conditions. Because u and υ  are contained in terms 14 and 15 in equation (B2c), we have 
to prove the following formula along boundary segment 2:  
 

( ) ( )
2 2

2 2
r

r r r r rn n n n d u n n n n d
r r rθ θ θ θ θ θ

⎡ ⎤εγ ∂ϕ γ ∂ϕ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε + − + = σ + τ + υ τ + σ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂θ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫  (B10a) 

 
The variational form of equation (B10a) can be written as 
 

( ) ( )
2 2

2 2
r

r r r r rn n n n d u n n n n d
r r rθ θ θ θ θ θ

⎡ ⎤εγ ∂ϕ γ ∂ϕ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε + δ − + δ = δ σ + τ + υδ τ + σ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫  

  (B10b) 
 
Consider the reduction of the first of the two right-hand terms in equation B10a: 
 

( )
2

2 2

b ca

r r r ru n n d u n n n d
r r r rrθ θ

⎧ ⎫⎛ ⎞ ⎡ ⎤∂ϕ ∂ ϕ ∂ ∂ϕ⎪ ⎪⎛ ⎞ ⎛ ⎞σ + τ = + −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂θ∂θ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
∫ ∫  (B11a) 
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The terms b and c that contain higher derivatives of the stress function are reduced to obtain terms in the 
first derivative of the stress function: 
 

( )
2

2 2 2

b b

r r
u un ud n d un d n d

r r r rr r θ θ
⎛ ⎞ ⎡ ⎤∂ ϕ ∂ϕ ∂ ∂ ∂ϕ ∂ϕ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ∂θ ∂ ∂θ ∂θ ∂∂θ ∂θ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

∫ ∫ ∫ ∫  

(B11b) 
 
The variation of the first right-hand term of equation (B10a) becomes 
 

( ) 2

                                                                                                    

r r r
u u uu n n d n n d
r r r rrθ θ

⎧ ⎫⎡ ⎤δ∂ϕ ∂ ∂ϕ ∂ ∂ϕ⎪ ⎪⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞δ σ + τ = − δ + δ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂θ ∂ ∂θ∂θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫

                            

 (B11c) 

Likewise, the second right-hand term is reduced: 
 

( ) 2r rn n d n n d
r r r rr

θ θ θ
⎧ ⎫⎡ ⎤υδ∂ϕ ∂υ δ∂ϕ ∂υ δ∂ϕ⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞δ τ + σ υ = + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂θ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂θ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫  (B11d) 

 
Verification of the formula given by equation (B10a) is obtained by combining the two equations (B11c) 
and (B11d): 
 

( ) ( )( )

( )

2

2

 

2 2

r r r

r r

r r r

u n n n n d

u u un n n n d
r r r r r r r r

n n n n
r r

θ θ θ

θ θ

θ θ θ

δ σ + τ + υδ τ + σ

⎧ ⎫⎡ ⎤ ⎡ ⎤∂υ ∂υ ∂ϕ ∂ υ ∂ ∂ϕ⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − δ − − − δ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂θ ∂ ∂ ∂θ ∂ ∂θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤γ ∂ϕ γ ∂ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ε + δ − − ε δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫

∫

2

d
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∫

 (B12) 

 
 

Verification of Boundary Compatibility Condition 
 
 Green’s theorem is used for a quick verification of the BCC. The BCC is inserted in the line integral 
coefficient to recover the well known field CC in the surface integral term. The integral theorem in polar 
coordinates can be written as 
 

( ) ( )1
r r r

G
rG ds G n G n d

r r r
θ

θ θ
∂∂⎛ ⎞− = +⎜ ⎟∂ ∂θ⎝ ⎠∫∫ ∫  (B13) 

 
where Gr and Gθ are the coefficients of direction cosines nr and nθ in equation (B9), respectively: 
 

( )
2

r
r

r
G

r r r r
θ∂ εε ∂γ

= − +
∂ ∂θ

 (B14a) 
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2
r

r r r
Gθ

∂ε ∂γ γ
− −

∂θ ∂
=  (B14b) 

 
The surface integral terms are generated as 
 

( ) 2 2

2
2

2
r rrG

r r r r r r r rr
θ θ⎛ ⎞∂ ∂ε ∂ ε∂ε ∂ γ⎛ ⎞

= − + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂θ∂⎝ ⎠ ⎝ ⎠
 (B15a) 

 
2 2

2 2 22
r

r rr r

G
r

θ ∂ ε ∂ γ ∂γ
− −

∂ ∂θ∂θ ∂θ

∂
=

∂θ
 (B15b) 

 
( ) 22 2

2 2 2 2
2r r rrG G

ds ds
r r r r r r r r rr r r

θ θ θ⎛ ⎞⎧ ⎫∂ ∂ ∂ ε ∂ε∂ ε ∂ε ∂γ ∂ γ⎪ ⎪− = − − + + − −⎜ ⎟⎨ ⎬ ⎜ ⎟∂ ∂θ ∂ ∂ ∂ ∂θ∂θ ∂ ∂θ⎪ ⎪⎩ ⎭ ⎝ ⎠
∫∫ ∫∫  (B16) 

 
The coefficient within the bracket is the field CC. The compatibility concept applies to the field as well as 
to the boundary. The nature of the compatibility expression changes in compliance with the domain and 
the boundary. The same interpretation is true for Cauchy’s field EEs. 
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Appendix C 
 Solution to an Eight-Bar Truss 

 
 The solution to the eight-bar truss shown in figure 2(a) is obtained using the integrated force method 
(IFM) (ref. 13), which is the discrete analogue of the completed Beltrami-Michell formulation (CBMF). 
The IFM, like the CBMF, generates the force solution by coupling the equilibrium equations (EEs) to the 
compatibility conditions. Displacements are back-calculated from the force solution. The truss is made of 
steel with Young’s modulus E = 30 000 ksi. Each of the eight bars has an area of 1 in2. Nodes 1 and 5 are 
fully restrained. It is subjected to a gravity load of magnitude P = –10 kip at the midspan location. The 
problem is to calculate the force and displacement response. 
 The six EEs of the structure can be written in terms of bar forces F as 
 

1

2

3

4

5

6

7

8

10 0 0 1 0 0 0
2

11 0 0 0 0 0 0 02
010 1 0 0 0 1 0
02

1 100 0 0 0 1 0 0
02

1 1 00 0 0 1 0 0
2 2

1 10 0 0 0 1 0
2 2

F
F
F
F
F
F
F
F

−⎡ ⎤−⎢ ⎥
⎢ ⎥

⎧ ⎫⎢ ⎥
⎪ ⎪⎢ ⎥ ⎧ ⎫⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪− ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎪ ⎪ ⎪ ⎪−⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥− ⎪ ⎪⎪ ⎪ ⎩ ⎭⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎩ ⎭

⎢ ⎥
⎢ ⎥
⎣ ⎦

 (C1) 

 
The two compatibility conditions (CCs) in bar deformations β can be written as 
 

1

2

3

4

5

6

7

8

01 1 2 2 1 1 0 0
00 1 0 0 0 0 1 0

β⎧ ⎫
⎪ ⎪β⎪ ⎪
⎪ ⎪β
⎪ ⎪⎡ ⎤ β ⎧ ⎫− − ⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥ β ⎩ ⎭⎣ ⎦ ⎪ ⎪
⎪ ⎪β
⎪ ⎪
β⎪ ⎪
⎪ ⎪β⎩ ⎭

 (C2) 

 

The CC is rewritten in member forces using the flexibility relation FL
AE

⎛ ⎞β =⎜ ⎟
⎝ ⎠

 for bar length L, area A, 

modulus E, and member force F: 
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1

2

3

4

5

6

7

8

1 1 2 2 1 1 0 0 0
0 1 0 0 0 0 1 0 0

F
F
F
F
F
F
F
F

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

− −⎡ ⎤ ⎧ ⎫⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭⎪ ⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (C3) 

 
Simultaneous solution of the six EEs and the two CCs yields the eight member forces {F}. The six 
displacements {X} are back-calculated: 
 

1

2 1

3 2

4 3

5 4

6 5

7 6 in.

8 kip

2.6
1.3 0.021
3.3 0.009

3.7 0.004
and

2.6 0.059
7.4 0.012
1.3 0.034
7.1

F
F X
F X
F X
F X
F X
F X
F

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬− −⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

−⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎩ ⎭⎩ ⎭
⎪ ⎪ ⎪ ⎪−⎩ ⎭⎩ ⎭

 (C4) 
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